Mechanism Branches, Turning Curves, and Critical Points
نویسندگان
چکیده
This paper considers single-degree-of-freedom, closed-loop linkages with a designated input angle and one design parameter. For a fixed value of the design parameter, a linkage has turning points (dead-input singularities), which break the motion curve into branches such that the motion along each branch can be driven monotonically from the input. As the design parameter changes, the number of branches and their connections, in short the topology of the motion curve, may change at certain critical points. As the design parameter changes, the turning points sweep out a curve we call the “turning curve,” and the critical points are the singularities in this curve with respect to the design parameter. The critical points have succinct geometric interpretations as transition linkages. We present a general method to compute the turning curve and its critical points. As an example, the method is used on a Stephenson II linkage. Additionally, the Stephenson III linkage is revisited where the input angle is able to rotate more than one revolution between singularities. This characteristic is associated with cusps on the turning point curve.
منابع مشابه
The Uniqueness Theorem for the Solutions of Dual Equations of Sturm-Liouville Problems with Singular Points and Turning Points
In this paper, linear second-order differential equations of Sturm-Liouville type having a finite number of singularities and turning points in a finite interval are investigated. First, we obtain the dual equations associated with the Sturm-Liouville equation. Then, we prove the uniqueness theorem for the solutions of dual initial value problems.
متن کاملCusps of Characteristic Curves and Intersection-Aware Visualization of Path and Streak Lines
We analyze characteristic curves of vector fields and report on locations where they have cusps in their spatial projection, i.e., isolated points on the curve with abruptly turning tangent direction. Cusps appear in places where a projection of the corresponding tangent curve vector field exhibits critical points. We show that such cusps are only possible for streak and path lines, whereas the...
متن کاملThe numerical values of the nodal points for the Sturm-Liouville equation with one turning point
An inverse nodal problem has first been studied for the Sturm-Liouville equation with one turning point. The asymptotic representation of the corresponding eigenfunctions of the eigenvalues has been investigated and an asymptotic of the nodal points is obtained. For this problem, we give a reconstruction formula for the potential function. Furthermore, numerical examples have been established a...
متن کاملSolving Real Polynomial Systems with Real Homotopies
When a real homotopy is used for solving a polynomial system with real coefficients, bifurcation of some of the homotopy paths at singular points is inevitable. The main result of this paper shows that, generically, the solution set of a real homotopy contains no singular point other than a finite number of quadratic turning points. At a quadratic turning point, the bifurcation phenomenon is qu...
متن کاملPrincipal curvature ridges and geometrically salient regions of parametric B-spline surfaces
Ridges are characteristic curves of a surface that mark salient intrinsic features of its shape and are therefore valuable for shape matching, surface quality control, visualization and various other applications. Ridges are loci of points on a surface where one of the principal curvatures attain a critical value in its respective principal direction. We present a new algorithm for accurately e...
متن کامل